Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Physiol Biochem ; 47(5): 1751-1768, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29953970

RESUMO

BACKGROUND/AIMS: Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignant tumors with poor prognosis. Conventional chemotherapies including gemcitabine have failed owing to weak response and side effects. Hence novel treatment regimens are urgently needed to improve the therapeutic efficacy. In this study, we aimed to assess the anticancer activity of melatonin and sorafenib as a novel therapy against PDAC. METHODS: We used various apoptosis assay and PDAC xenograft model to assess anticancer effect in vitro and in vivo. We applied phospho-receptor tyrosine kinase (RTK) array and phospho-tyrosine kinase array to explore the mechanism of the combined therapy. Western blotting, proximity ligation assay, and immunoprecipitation assay were also performed for validation. RESULTS: Melatonin synergized with sorafenib to suppress the growth of PDAC both in vitro and in vivo. The effect was due to increased apoptosis rate of PDAC cells that was accompanied by mitochondria dysfunction. The enhanced anticancer efficacy by the co-treatment could be explained by blockade of PDGFR-ß/STAT3 signaling pathway and melatonin receptor (MT)-mediated STAT3. CONCLUSIONS: Melatonin reinforces the anticancer activity of sorafenib by downregulation of PDGFR-ß/STAT3 signaling pathway and melatonin receptor (MT)-mediated STAT3. The combination of the two agents might be a potential therapeutic strategy for treating PDAC.


Assuntos
Melatonina/farmacologia , Proteínas de Neoplasias/metabolismo , Niacinamida/análogos & derivados , Neoplasias Pancreáticas/tratamento farmacológico , Compostos de Fenilureia/farmacologia , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptores de Melatonina/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular Tumoral , Sinergismo Farmacológico , Humanos , Melatonina/agonistas , Niacinamida/agonistas , Niacinamida/farmacologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Compostos de Fenilureia/agonistas , Sorafenibe
2.
Cell Physiol Biochem ; 47(3): 957-971, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29843133

RESUMO

BACKGROUND/AIMS: As the most lethal urological cancers, renal cell carcinoma (RCC) comprises a heterogeneous group of cancer with diverse genetic and molecular alterations. There is an unmet clinical need to develop efficacious therapeutics for advanced, metastatic and/or relapsed RCC. Here, we investigate whether anthelmintic drug Niclosamide exhibits anticancer activity and synergizes with targeted therapy Sorafenib in suppressing RCC cell proliferation. METHODS: Cell proliferation and migration were assessed by Crystal violet staining, WST-1 assay, cell wounding and cell cycle analysis. Gene expression was assessed by qPCR. In vivo anticancer activity was assessed in xenograft tumor model. RESULTS: We find that Niclosamide effectively inhibits cell proliferation, cell migration and cell cycle progression, and induces apoptosis in human renal cancer cells. Mechanistically, Niclosamide inhibits the expression of C-MYC and E2F1 while inducing the expression of PTEN in RCC cells. Niclosamide is further shown to synergize with Sorafenib in suppressing RCC cell proliferation and survival. In the xenograft tumor model, Niclosamide is shown to effectively inhibit tumor growth and suppress RCC cell proliferation. CONCLUSIONS: Niclosamide may be repurposed as a potent anticancer agent, which can potentiate the anticancer activity of the other agents targeting different signaling pathways in the treatment of human RCC.


Assuntos
Carcinoma de Células Renais/tratamento farmacológico , Neoplasias Renais/tratamento farmacológico , Niacinamida/análogos & derivados , Niclosamida/farmacologia , Compostos de Fenilureia/farmacologia , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Ciclo Celular/efeitos dos fármacos , Sinergismo Farmacológico , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Proteínas de Neoplasias/biossíntese , Niacinamida/agonistas , Niacinamida/farmacologia , Niclosamida/agonistas , PTEN Fosfo-Hidrolase/biossíntese , Compostos de Fenilureia/agonistas , Sorafenibe
3.
Haematologica ; 97(11): 1722-30, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22689683

RESUMO

BACKGROUND: Both the multi-kinase inhibitor sorafenib and the small molecule inhibitor of the MDM2/p53 interaction, nutlin-3, used alone, have shown promising anti-leukemic activity in acute myeloid leukemia cells. Thus, in this study we investigated the effect of the combination of sorafenib plus nutlin-3 in acute myeloid leukemia. DESIGN AND METHODS: Primary acute myeloid leukemia blasts (n=13) and FLT3(wild-type)/p53(wild-type) (OCI-AML3), FLT3(mutated)/p53(wild-type) (MOLM), FLT3(mutated)/p53(mutated) (MV4-11), FLT3(wild-type)/p53(deleted) (HL60) or FLT3(wild-type)/p53(mutated) (NB4) acute myeloid cell lines were exposed to sorafenib, used alone or in association with nutlin-3 at a 1:1 ratio, in a range of clinically achievable concentrations (1-10 µM). Induction of apoptosis and autophagy was evaluated by transmission electron microscopy and by specific flow cytometry analyses. The levels of Mcl-1, p53 and Bak proteins were analyzed by western blotting. Knock-down of Bax and Bak gene expression was performed in transfection experiments with specific short interfering RNA. RESULTS: The sorafenib+nutlin-3 drug combination exhibits synergistic cytotoxicity in primary acute myeloid leukemia blasts and in acute myeloid leukemia cell lines with maximal cytotoxicity in FLT3(mutated) MV4-11 and MOLM, followed by the FLT3(wild-type) OCI-AML3, HL60 and NB4 cell lines. The cytotoxic activity of sorafenib+nutlin-3 was characterized by an increase of both apoptosis and autophagy. Moreover, Bax and Bak showed prominent roles in mediating the decrease of cell viability in response to the drug combination in p53(wild-type) OCI-AML3 and p53(deleted) HL-60 cells, respectively, as demonstrated in transfection experiments performed with specific short interfering RNA. CONCLUSIONS: Our data demonstrate that acute myeloid leukemia cells show a variable but overall good susceptibility to the innovative therapeutic combination of sorafenib+nutlin-3, which differentially involves the pro-apoptotic Bcl-2 family members Bax and Bak in p53(wild-type) and p53(deleted) cells.


Assuntos
Antineoplásicos/farmacologia , Imidazóis/farmacologia , Leucemia Mieloide Aguda , Niacinamida/análogos & derivados , Compostos de Fenilureia/farmacologia , Piperazinas/farmacologia , Proteína Supressora de Tumor p53 , Tirosina Quinase 3 Semelhante a fms , Antineoplásicos/agonistas , Sinergismo Farmacológico , Feminino , Células HL-60 , Humanos , Imidazóis/agonistas , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Masculino , Niacinamida/agonistas , Niacinamida/farmacologia , Compostos de Fenilureia/agonistas , Piperazinas/agonistas , Sorafenibe
4.
Mol Pharmacol ; 80(6): 1013-32, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21885620

RESUMO

Although α7 nicotinic acetylcholine receptors are considered potentially important therapeutic targets, the development of selective agonists has been stymied by the α7 receptor's intrinsically low probability of opening (P(open)) and the concern that an agonist-based therapeutic approach would disrupt endogenous cholinergic function. Development of α7 positive allosteric modulators (PAMs) holds promise of avoiding both issues. N-(5-Chloro-2,4-dimethoxyphenyl)-N'-(5-methyl-3-isoxazolyl)-urea (PNU-120596) is one of the most effective α7 PAMs, with a mechanism associated, at least in part, with the destabilization of desensitized states. We studied the mechanism of PNU-120596 potentiation of α7 receptors expressed in Xenopus laevis oocytes and outside-out patches from BOSC 23 cells. We identify two forms of α7 desensitization: one is destabilized by PNU-120596 (D(s)), and the other is induced by strong episodes of activation and is stable in the presence of the PAM (D(i)). Our characterization of prolonged bursts of single-channel currents that occur with PNU-120596 provide a remarkable contrast to the behavior of the channels in the absence of the PAM. Individual channels that avoid the D(i) state show a 100,000-fold increase in P(open) compared with receptors in the nonpotentiated state. In the presence of PNU-120596, balance between D(s) and D(i) is dynamically regulated by both agonist and PAM binding, with maximal ion channel activity at intermediate levels of binding to both classes of sites. In the presence of high agonist concentrations, competitive antagonists may have the effect of shifting the balance in favor of D(s) and increasing ion channel currents.


Assuntos
Isoxazóis/farmacologia , Compostos de Fenilureia/farmacologia , Receptores Nicotínicos/fisiologia , Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/fisiologia , Animais , Células Cultivadas , Feminino , Humanos , Isoxazóis/agonistas , Isoxazóis/metabolismo , Agonistas Nicotínicos/metabolismo , Agonistas Nicotínicos/farmacologia , Compostos de Fenilureia/agonistas , Compostos de Fenilureia/metabolismo , Estabilidade Proteica/efeitos dos fármacos , Receptores Nicotínicos/metabolismo , Xenopus laevis , Receptor Nicotínico de Acetilcolina alfa7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...